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1. INTRODUCTION

This article is an extended version of two overview talks given by the authors
in September 2013 at the Simons conference on “Foliation theory in algebraic geo-
metry”. We survey some recent developments regarding the global geometry of
complex algebraic varieties with singularities occurring in the theory of minimal
models. In other words, we are primarily interested in varieties with canonical
or Kawamata log terminal (klt) singularities. More generally, we are interested in
varieties X carrying a Q-divisor such that (X, D) is klt, or perhaps log-canonical.

A typical problem is to understand the structure of complex projective varieties
X with numerically trivial canonical class KX . These are the minimal models of
manifolds Y with Kodaira dimension κ(Y) = 0. If X happens to be smooth, which
is rare in minimal model theory, then powerful methods from analysis, such as
existence results for Kähler-Einstein metrics, can be applied to study the structure
of X. In the singular case however, new methods have to be developed, and we
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describe some steps along this way. For this, a good understanding of differen-
tial forms on varieties with canonical or klt singularities is required. Such an un-
derstanding is essential also in other circumstances, including moduli problems.
Arguing along these lines, we show how the classical decomposition theorem for
Kähler manifolds with vanishing first Chern class generalises to the singular case,
to give a set of canonically defined foliations whose global geometry still needs to
be explored.

In a similar vein, we recall a famous theorem of Yau, which asserts that any
compact Kähler manifold with vanishing first and second Chern class is an étale
quotient of a torus. Again, the proof of this result relies on the existence of a
Kähler-Einstein metric. In case where X is projective and has canonical singularit-
ies we will prove an analogous statement, where the quotient is étale in codimen-
sion one. In a certain sense, this statement can be seen as saying that the foliations
constructed above are trivial, and that the second Chern class might be understood
as an obstruction against their triviality. The proof requires a good understanding
of the difference of the algebraic fundamental group of X and that of its smooth
locus. In particular, we need to understand the geometric meaning of the flatness
of the smooth locus of X.

Outline of the paper. We give a short description of the content of the paper. As
it might have become clear, there are two main technical tools: the theory of good
(=reflexive) differentials and the study of fundamental groups. Part I is devoted
to the study of differential forms, with the technical core, the Extension Theorem,
described in Section 2 and the applications being given in the subsequent Sec-
tions 3–7. Part II first discusses algebraic fundamental groups of varieties with klt
singularities in Section 8, followed in Sections 9 and 10 by applications to varieties
whose regular part is flat and to varieties with trivial canonical and trivial second
Chern class. Finally, we mention how the topological main result completes the
structure theory of Nakayama-Zhang on polarised endomorphisms.

Notation and global assumptions. Throughout the paper, we work over the com-
plex number field. We use standard notation and follow the conventions of min-
imal model theory, as introduced in [Har77, KM98]. We will frequently consider
quasi-étale morphisms, a concept which might be non completely standard: A fi-
nite, surjective morphism of normal varieties γ : X → Y is called quasi-étale if γ is
étale in codimension one.

Acknowledgements. Both authors found the conference on “Foliation theory” ex-
ceptionally fruitful. They would like to thank the organisers for the invitation, and
the Simons Foundation for financing this event. They also thank Behrouz Taji, who
pointed them to a mistake in the first version of this paper.

This overview article summarises the content of the research articles [GKKP11,
GKP11, GKP13a, GKP13b] as well as some recent developments by Graf, Jörder
and others, and aims to put them into perspective. The results presented here are
therefore not new. The exposition frequently follows the original articles. Proper
references will be given throughout.

Part I. Extension of differential forms and applications

2. REFLEXIVE DIFFERENTIALS AND THE EXTENSION THEOREM

2.1. Statement of result. We define the notion of reflexive differentials and state
the main results of the paper [GKKP11] in this section. As there are other surveys
available, we restrict ourselves to the minimal amount of material needed in later
chapters and refer the reader to [Keb13a] for a more detailed introduction.
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Definition 2.1. Let X be a normal variety or normal complex space. The sheaf of reflexive
differentials on X is defined to be

Ω[p]
X :=

(
∧pΩ1

X
)∗∗,

where Ω1
X is the sheaf of Kähler differentials. If D is a a reduced Weil divisor on X and if

Ω1
X(log D) denotes the sheaf of Kähler differentials with logarithmic poles along D, then

Ω[p]
X (log D) :=

(
∧pΩ1

X(log D)
)∗∗.

Notation 2.2. Let X be a normal variety or normal complex space. Given a coherent
sheaf A on X and a positive number m, set A [m] := (A ⊗m)∗∗. If f : X′ → X is
any morphism, then f [∗](A ) := ( f ∗(A )∗∗.

Notation 2.3. Let X be a normal variety or normal complex space and D a Q-Weil
divisor on X. A log resolution of the pair (X, D) is a birational morphism π : X̃ → X
such that X̃ is smooth, the exceptional locus E has pure codimension one and
the set π−1(supp D) ∪ E is a divisor with simple normal crossing support. By
Hironaka’s theorem, log resolutions always exist.

In a simplified form, the main result of [GKKP11] can be stated as follows.

Theorem 2.4 ([GKKP11, Theorem 1.4]). Let X be a quasi-projective variety such that
(X, 0) is klt. Let π be a log resolution of (X, 0) and let p be any number. Then π∗Ω

p
X̃
=

Ω[p]
X . Equivalently, π∗Ω

p
X̃

is reflexive. �

In the most general version, we consider a log-canonical pair (X, D). Then there
exists a smallest closed algebraic set N such that (X, D) is klt outside N. The set N
is called the non-klt locus of (X, D).

Theorem 2.5 ([GKKP11, Theorem 1.5]). Let X be a quasi-projective variety carrying
a Q-Weil-divisor D such that (X, D) is log-canonical, with non-klt locus N ⊂ X. Let
π : X̃ → X be a log resolution with exceptional set E, and let D̃ ⊂ X̃ be the largest reduced
divisor contained in π−1(N). Then π∗Ω

p
X̃
(log D̃) = Ω[p]

X (log D), for all numbers p.
�

We refer to both theorems as “extension theorems”. In fact, Theorem 2.5 can
be restated as follows. Given any open set U ⊆ X with preimage Ũ = π−1(U),
Theorem 2.5 asserts that the restriction

H0(Ũ, Ωp
X̃
(log D̃)

)︸ ︷︷ ︸
=H0

(
U, π∗Ω

p
X̃
(log D̃)

) → H0(Ũ \ E, Ωp
X(log D̃)

)︸ ︷︷ ︸
=H0

(
U, Ω[p]

X (log D)
)

is surjective, and hence isomorphic.

2.2. Related results. Building on results of Steenbrink-van Straten, [SvS85], Flen-
ner proved in [Fle88] a version of Theorem 2.4 for p ≤ codim Xsing, for all nor-
mal varieties and without any assumption on the nature of the singularities.
Namikawa showed Theorem 2.4 for p ∈ {1, 2}, provided that X has canonical
Gorenstein singularities, [Nam01, Section 1]. For further discussions we refer to
[GKKP11].

We would like to emphasise that Theorems 2.4 and 2.5 are optimal if we want to
have extension for all p. For examples and details, see [GKKP11, Section 3]. Rela-
tions to the notion of Du Bois singularities and pairs are discussed in [GK13, GK14].
Relations to h-differentials, the sheafification of Kähler differentials in Voevod-
sky’s h-topology, are discussed in [JH13].
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2.3. Extension in the analytic category. The Extension Theorems 2.4 and 2.5 are
stated and proved in the algebraic category. In fact, the proof heavily uses parts of
the minimal model program and certain vanishing theorems which are presently
unavailable in the analytic category. However, there seems no reason why the
Extension Theorem should not hold analytically. There is no problem to define
notions as klt, log-canonical in the analytic category. In [GKP13a] a holomorphic
version of Theorem 2.5 is established, provided the pair (X, D) is locally algebraic.
This is to say that every point p ∈ X admits an open Euclidean neighbourhood U
which is open in a quasi-projective variety Y such that D|U is the restriction of a
divisor on Y. Following a famous algebraisation result of M. Artin, [Art69, The-
orem 3.8], examples for locally algebraic spaces are provided by complex spaces
with isolated singularities. Other examples are given by Moishezon spaces. The
best known result in the analytic category reads as follows.

Theorem 2.6 ([GKP13a, Section 2]). Let X be a normal complex locally algebraic variety
carrying a Q-divisor D such that (X, D) is log-canonical, with non-klt locus N ⊂ X. Let
π : X̃ → X be a log resolution with exceptional set E. Let D̃ be the largest reduced divisor
contained in π−1(N). Then π∗Ω

p
X̃
(log D̃) is reflexive for all p. �

As pointed out, we expect that the Extension Theorems hold in full generality
in the analytic category.

Conjecture 2.7. Theorem 2.6 holds without the assumption that X is locally algebraic.

3. KODAIRA-AKIZUKI-NAKANO VANISHING AND THE POINCARÉ LEMMA

3.1. KAN type vanishing results for reflexive differentials. Recall the statement
of the classical Kodaira-Akizuki-Nakano Vanishing Theorem.

Theorem 3.1 ([AN54]). Let X be a smooth projective variety and let L be an ample line
bundle on X. Then

Hq(X, Ωp
X ⊗L

)
= 0 for p + q > n, and(3.1.1)

Hq(X, Ωp
X ⊗L −1) = 0 for p + q < n. �(3.1.2)

Assertions (3.1.1) and (3.1.2) are equivalent via Serre duality. Ramanujam
[Ram72] gave a simplified proof of Theorem 3.1 and showed that it does not hold
if one only requires L to be semi-ample and big. Esnault and Viehweg generalised
Theorem 3.1 to logarithmic differentials, [EV86].

We ask for generalisations of Kodaira-Akizuki-Nakano vanishing to singular
varieties, using reflexive differentials. In full generality, Kodaira-Akizuki-Nakano
vanishing has been established for sheaves of reflexive differentials on varieties
with quotient singularities, see [Ara88], as well as on toric varieties, see [CLS11,
Theorem 9.3.1].

For varieties with more general types of singularities, vanishing results of KAN
type are restricted to special values of p and q. It turns out that even for spaces with
isolated terminal Gorenstein singularities, Theorem 3.1 does not hold for arbitrary
p+ q > n, respectively p+ q < n. We begin the discussion with one generalisation
of Assertion (3.1.2).

Theorem 3.2 ([GKP13a, Proposition 4.3]). Let X be a normal projective variety of di-
mension n, let D be an effective Q-divisor on X such that (X, D) is log canonical, and let
L ∈ Pic(X) be an ample line bundle. Then

H0(X, Ω[p]
X (logbDc)⊗L −1) = 0 for all p < n, and(3.2.1)

H1(X, Ω[p]
X (logbDc)⊗L −1) = 0 for all p < n− 1.(3.2.2)
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If (X, D) is additionally assumed to be dlt, then Hq(X, L −1) = 0 for all q < n. �

The are analogous generalisations of Assertion (3.1.1).

Theorem 3.3 ([GKP13a, Proposition 4.5]). Let X be a normal projective variety of
dimension n, let D be an effective Q-divisor on X such that (X, D) is klt, and let
L ∈ Pic(X) be an ample line bundle. Then

Hq(X, ωX ⊗L
)
= 0 for all q > 0, and(3.3.1)

Hn(X, Ω[p]
X ⊗L

)
= 0 for all p > 0. �(3.3.2)

Example 3.4. The paper [GKP13a] exhibits a klt space X of dimension 4 and an
ample line bundle L such that

H2(X, Ω[1]
X ⊗L −1) 6= 0 and H2(X, Ω[3]

X ⊗L
)
6= 0.

It follows that Kodaira-Akizuki-Nakano does not hold in full generality on a
klt space, even when the space has only Gorenstein, terminal singularities. The
example given in [GKP13a] starts with the threefold Y := P(TP2). Set X̃ =

P(OY ⊕OY(1)) and let π : X̃ → X be the contraction of the divisor E = P(OY)).
Then p = π(E) is a terminal Gorenstein singularity. The calculations for the co-
homology groups are lengthy. We refer the reader to [GKP13a] for details.

3.2. Relation to the Poincaré lemma for reflexive differential forms. Needless to
say, the Poincaré lemma is fundamental in the theory of complex manifolds. It is
therefore natural to ask to which extent it holds also for reflexive differentials on
singular. Results in this direction have been obtained by several authors, including
Campana-Flenner, Greuel and Reiffen. The singularities discussed in their work
are often isolated, rational or holomorphically contractible. A rather complete list
of references is found in Jörder’s paper [Jö14]. For locally algebraic klt spaces, the
Poincaré lemma holds in degree one.

Theorem 3.5 ([GKP13a, Theorem 5.4]). Let X be a normal complex space and D an
effective Q-divisor on X such that (X, D) is analytically klt and locally algebraic. Let
σ ∈ H0(X, Ω[1]

X
)

be a closed holomorphic reflexive one-form on X. Then every p ∈ X
has an open neighbourhood U (in the Euclidean topology) and a holomorphic function
f ∈ OX(U) such that σ|U = d fU . �

The notion of analytic klt spaces, which is rather self-explaining, is properly in-
troduced in [GKP13a]. Notice that it is not difficult to construct counterexamples
to Theorem 3.5 if (X, D) is only assumed to be log-canonical.

In his Freiburg Ph.D. thesis [Jö14] Jörder found a topological condition1 which
guarantees the validity of the Poincaré lemma in degree one, for normal, locally al-
gebraic, complex spaces. Besides various other results, he showed that for project-
ive varieties of dimension at least four with only one isolated rational singularity
p, any failure of the Poincaré lemma in degree three yields

H2(X, Ω[q]
X ⊗L −1) 6= 0, for any ample line bundle L over X.

He also shows that the local divisor class groups of the singular points are ob-
structions to KAN type vanishing. In Example 3.4, it is the latter that give the
non-vanishing, whereas the Poincaré lemma does hold everywhere. We refer the
reader to [Jö14] for details. Poincaré lemmas in the context of h-differentials are
also discussed there.

1vanishing of a local intersection cohomology group
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4. VARIETIES WITH TRIVIAL CANONICAL CLASSES

4.1. Decomposition of Kähler manifolds with vanishing first Chern class. We
recall the famous structure theorem for Kähler manifolds with vanishing first
Chern class.

Theorem 4.1 ([Bea83] and references there). Let X be a compact Kähler manifold whose
canonical divisor is numerically trivial. Then there exists a finite étale cover X′ → X such
that X′ decomposes as a product

X′ = T ×∏
ν

Xν

where T is a compact complex torus, and where the Xν are irreducible and simply-
connected Calabi-Yau– or holomorphic-symplectic manifolds. �

Remark 4.2. Let X be a compact, simply-connected Kähler manifold. We call X
“Calabi-Yau” if ωX ∼= OX and h0(X, Ωp

X
)
= 0 for all p 6∈ {0, dim X}. We call

X “irreducible holomorphic-symplectic”, if ωX ∼= OX and if there exists a non-
degenerate two-form whose wedge powers generate the ring of differential forms.

4.2. Decomposition of the tangent sheaf. Important as it is, the class of manifolds
with vanishing first Chern class is too small from the point of view of birational
classification of projective (or compact Kähler) manifolds. There, we are gener-
ally more interested in the structure of manifolds X with Kodaira dimension zero,
κ(X) = 0. Conjecturally, any such X possesses a good minimal model X′, which is
Q-factorial, has terminal singularities and a numerically trivial canonical divisor
KX′ ≡num 0. Given one such X′, a theorem of Kawamata, [Kaw85b, Theorem 1.1],
asserts that there exists a positive number m such that OX(mKX′) ∼= OX′ . We aim
to prove a structure theorem for these varieties. Building on the Extension The-
orem 2.4, the following infinitesimal analogue of Theorem 4.1 has been established
in [GKP11].

Theorem 4.3 ([GKP11, Theorem 1.3]). Let X be a normal, projective variety with at
worst canonical singularities. Assume that the canonical divisor of X is numerically
trivial, KX ≡ 0. Then, there exists an Abelian variety A, a projective variety X̃ with
at worst canonical singularities, a quasi-étale cover f : A× X̃ → X, and a decomposition

TX̃
∼=
⊕

Ei

such that the following holds.
(4.3.1) The Ei are integrable saturated subsheaves of TX̃ , with trivial determinants.

Further, if g : X̂ → X̃ is any quasi-étale cover, then the following properties hold in
addition.

(4.3.2) The sheaves (g∗Ei)
∗∗ are slope-stable with respect to any ample polarisation on

X̂.
(4.3.3) The irregularity of X̂ is zero, h1(X̂, OX̂

)
= 0.

Idea of proof. Parts of the proof follow ideas of Bogomolov, [Bog74]. Consider a
normal projective variety X as in Theorem 4.3. Set n := dim X. From the work
of Kawamata [Kaw85a] we obtain a quasi-étale cover f : A× X′ → X where A is
an Abelian variety, where ωX′

∼= OX′ and q(X′) = 0, even after further quasi-étale
covers of X′. Thus we will assume from now on that q(X) = 0, and we are allowed
to pass to quasi-étale covers if we wish to do so.

Instead of decomposing TX directly, we first show that there exists a decom-
position in the ring of reflexive forms: given any number p and any reflex-
ive form σ ∈ H0(X, Ω[p]

X
)
, we show that there exists a complementary form
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τ ∈ H0(X, Ω[n−p]
X

)
such that σ|Xreg ∧ τ|Xreg is a nowhere-vanishing top-form,

defined on the smooth locus Xreg. In other words, we show that the natural pairing
given by the wedge product,

(4.3.4)
∧

: H0(X, Ω[p]
X
)
× H0(X, Ω[n−p]

X
)
−→ H0(X, ωX

) ∼= C,

is non-degenerate. For this, we express the Pairing (4.3.4) in terms of Dolbeault
cohomology. The Extension Theorem 2.4 and the fact that canonical singularities
are rational allows to compare the relevant cohomology groups with those that
exist on a resolution X̃ of singularities. Non-degeneracy of (4.3.4) comes out of
non-degeneracy of the Serre duality pairings on X̃.

In order to construct a decomposition of the tangent sheaf, recall from
Miyaoka’s work [Miy87a, Miy87b] that the tangent sheaf TX is slope-semistable
with respect to any polarisation. Assuming that there exists a polarisation h where
TX is not stable, consider a destabilising subsheaf E ( TX . It follows that the
slope of E vanishes, µh(E ) = 0, and it is easy to deduce from there that c1(E ) = 0.

Passing to the minimal dlt model, we can assume that X is Q-factorial, [BCHM10].
Using Q-factoriality and q(X) = 0, we conclude that det E ∼= OX , perhaps after
passing to another étale cover. If r := rank E , we obtain a subsheaf

det E ∼= OX ⊂ Ω[r]
X .

In other words, we have constructed a reflexive differential form σ ∈ H0(X, Ω[r]
X
)
.

Using the existence of a complementary form τ ∈ H0(X, Ω[r]
X
)
, one can show by

linear algebra that E is a direct summand of TX . �

The proof of Theorem 4.1 uses the existence of a Ricci-flat Kähler-Einstein met-
ric quite heavily. In the singular setting, the necessary differential-geometric tools,
namely a Kähler-Einstein metric on the smooth locus of X with good boundary
behaviour near the singularities, are not available so far —see [EGZ09] for recent
developments in this direction. In order to pass from the infinitesimal decompos-
ition of Theorem 4.3 to a physical decomposition of the variety as in Theorem 4.1,
we would therefore propose to use different, more algebraic methods. The main
problem is to show that the leaves of the foliation are algebraic, and then to analyse
the structure of the closure of the leaves.

The following would be a conjectural analogue of Theorem 4.1. Together with
the (conjectural) existence of good minimal models, a positive answer to this con-
jecture would give a rather satisfying structure theory for projective manifolds
with vanishing Kodaira dimension.

Problem 4.4. Let X be a normal, Q-factorial, projective variety with canonical singu-
larities and trivial canonical class KX . Suppose that q(X̂) = 0 for all quasi-étale covers
X̂ → X. Then, there exists a quasi-étale cover X′ → X, such that X′ is birational to a
product

X′ ∼biratl ∏
ν

X′ν,

where the varieties X′ν are Q-factorial, with only canonical singularities, trivial canonical
classes and the additional property that the tangent sheaf is strongly stable, that is, stable
for any ample polarisation, even after passing to further quasi-étale covers.

4.3. Strongly stable varieties. Whether or not Problem 4.4 has a positive solu-
tion, canonical varieties with linearly trivial canonical divisor and strongly stable
tangent bundle will be important building blocks in any structure theory for vari-
eties of Kodaira dimension zero. In analogy to the distinction between irreducible
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complex-symplectic and Calabi-Yau manifolds, one can distinguish the following two
basic types.

Definition 4.5. Let X be a normal projective variety with KX ∼= OX , having at worst
canonical singularities.

(4.5.1) We call X Calabi-Yau if H0(X̃, Ω[q]
X
)
= 0 for all numbers 0 < q < dim X and

all quasi-étale covers X̃ → X.
(4.5.2) We call X irreducible holomorphic-symplectic if there exists a reflexive 2-

form σ ∈ H0(X, Ω[2]
X
)

such that σ is everywhere non-degenerate on Xreg, and
such that for all quasi-étale covers f : X̃ → X, the exterior algebra of global
reflexive forms is generated by f ∗(σ).

We expect that the dichotomy known from the smooth case will also hold for
singular varieties.

Conjecture 4.6. Let X be a projective variety with canonical singularities. If ωX ∼=
OX and if TX is strongly stable, then X is either Calabi-Yau or irreducible holomorphic-
symplectic, in the sense of Definition 4.5.

Remark 4.7. The converse of Conjecture 4.6 is known to hold: The tangent sheaf of
any Calabi-Yau or irreducible symplectic variety is strongly stable, [GKP11, Pro-
position 8.20].

In the smooth case, Calabi-Yau– and irreducible complex-symplectic manifolds
are distinguished by their holonomy representation. As this depends again on the
Ricci-flat Kähler metric, we cannot use holonomy in the singular setting. However,
the following theorem does provide some evidence that the conjecture might in
fact still be true.

Theorem 4.8 ([GKP11, Propositions 8.15 and 8.21]). Conjecture 4.6 holds if the di-
mension of X is no more than five.. �

Theorem 4.8 has been shown using stability properties of wedge powers of TX .
In fact, one way to attack Conjecture 4.6 is to observe that in the smooth case,
the classes of Calabi-Yau and irreducible holomorphic-symplectic manifolds are
distinguished by stability properties of

∧2 TX .

Proposition 4.9. Let X be a simply connected compact Kähler manifold with c1(X) = 0.
Fix an ample polarisation h. Then the following holds.

(4.9.1) The manifold X is Calabi-Yau if and only if TX and
∧2 TX are both h-stable.

(4.9.2) The manifold X is irreducible symplectic if and only TX is h-stable and ∧2TX is
h-semistable but not h-stable.

Idea of proof. Using the Decomposition Theorem 4.1 and the smooth version of
Theorem 4.3, we need only to show that the wedge power

∧2 TX of a Calabi-Yau
manifold X is h-stable. If not, consider a destabilising subsheaf S ⊂ ∧2 TX , say
of rank r. Since det S = OX , we obtain the non-vanishing

H0(X, ∧r ∧2 TX
)
6= 0.

However —using holonomy and representation theory— it is a standard fact, al-
though possibly never stated explicitly in the literature, that, with n = dim X,

H0(X, T ⊗m
X
)
=

{
1 if m is a multiple of n
0 otherwise.

If m is a multiple of n, the section comes from the direct summand OX =
(−aKX) ⊂ T ⊗m

X . This contradicts the above non-vanishing, since ∧r ∧2 TX is a
direct summand of some T ⊗m

X . �
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To prove Conjecture 4.6 along these lines, a solution to the following problem
would be needed.

Problem 4.10 ([GKP11, Problem 8.11]). Let X be a normal projective variety of dimen-
sion n > 1 with KX ∼= OX , having at worst canonical singularities. Assume that the
tangent sheaf TX is strongly stable. Then show that the following holds.

(4.10.1) For any odd numbers q 6= n and any quasi-étale cover X̃ → X, we have
H0(X̃, Ω[q]

X̃

)
= 0.

(4.10.2) If there exists a quasi-étale cover g : X′ → X and an even number 0 <

q < n such that H0(X′, Ω[q]
X′
)
6= 0, then there exists a reflexive 2-form

σ′ ∈ H0(X′, Ω[2]
X′
)
, symplectic on the smooth locus X′reg, such that for any

quasi-étale cover f : X̃ → X′, the exterior algebra of global reflexive forms
on X̃ is generated by f ∗(σ′). In other words,⊕

p
H0
(

X̃, Ω[p]
X̃

)
= C

[
f ∗(σ)

]
.

It is shown in [GKP11, Proposition 8.21] that Problem 4.10 implies Conjec-
ture 4.6. As indicated above, Problem 4.10 has been solved if dim X is at most
five, [GKP11, Proposition 8.15]. It is certainly true if X is smooth, [GKP11, Propos-
ition 8.13]. We expect that in (4.10.2), it will be unnecessary to pass to the cover
X̃.

4.4. The fundamental group. The fundamental group π1(X) of a compact Kähler
manifold X with c1(X) = 0 is almost Abelian. In other words, there exists an
Abelian subgroup in π1(X) of finite index. The proof of this result does not require
the Structure- and Decomposition Theorem 4.1, but nevertheless uses the existence
of a Ricci-flat metric. A long-standing problem asks whether the same is true if
only κ(X) = 0.

Conjecture 4.11. Let X be a projective (compact Kähler) manifold with κ(X) = 0. Then
π1(X) is almost Abelian.

If X′ is a minimal model of X, a result of Takayama [Tak03, Theorem 1.1], asserts
that π1(X) ∼= π1(X′). This leads us to conjecture the following.

Conjecture 4.12. Let X be a normal projective variety with at most terminal (canonical)
singularities. If KX ≡num 0, then π1(X′) is almost Abelian. If additionally q(X̃) = 0 for
any quasi-étale cover X̃ → X, then π1(X) is finite.

The following result in this direction has been established. The proof relies on
Campana’s work, [Cam95], and on the methods introduced in Section 4.2.

Theorem 4.13 ([GKP11, Proposition 8.20]). Let X be a normal, n-dimensional, project-
ive variety with at worst canonical singularities. If KX is torsion and if χ(X, OX) 6= 0,
then π1(X) is finite, of cardinality

|π1(X)| ≤ 2n−1

|χ(X, OX)|
. �

Theorem 4.14 ([GKP11, Corollary 8.25]). Let X be a normal projective variety with at
worst canonical singularities. Assume that dim X ≤ 4, and that the canonical divisor KX
is numerically trivial. Then π1(X) is almost Abelian, that is, π1(X) contains an Abelian
subgroup of finite index. �

The case n = 3 has been shown previously in [Kol95, 4.17.3].
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5. RATIONALLY CONNECTED VARIETIES

5.1. Pluriforms on rationally connected varieties. Rationally connected and ra-
tionally chain connected varieties play a prominent role in the structure theory of
algebraic varieties. It is a basic fact that a rationally connected projective manifold
X does not carry any pluriform, that is

(5.0.1) H0(X, (Ω1
X)
⊗m) = 0 ∀m ∈N+.

We refer the reader to [Kol96, IV.3.8] for a thorough discussion of this result. The
key of the proof is the existence of many rational curves C ⊂ X such that the
restricted tangent bundle TX |C is ample.

A well-known conjecture of Mumford asserts that (5.0.1) actually character-
ises rationally connected manifolds. This has been proven in dimension three
by Kollár–Miyaoka–Mori, [KMM92, Thm. 3.2]. For an asymptotic version in any
dimension, see [Pet06, CDP12]. As an immediate consequence of the Extension
Theorem 2.4, the vanishing result (5.0.1) generalises to reflexive p-forms on spaces
which support klt pairs.

Theorem 5.1 ([GKKP11, Theorem 5.1]). Let X be a normal, rationally chain-connected
projective variety. If there exists a Q-divisor D on X such that (X, D) is klt, then
H0(X, Ω[p]

X
)
= 0 for all 1 ≤ p ≤ dim X. �

Remark 5.2. At this point, the following remark might be useful. Let X be a normal,
rationally chain-connected projective variety. If there exists a Q-divisor D on X
such that (X, D) is klt, then X is in fact rationally connected, cf. [HM07, Cor. 1.5].

It is natural to suspect that the vanishing (5.0.1) should also hold for pluriforms,
that is, for section in reflexive tensor powers, H0(X, (Ω1

X)
[m]
)
. Somewhat surpris-

ingly, this is not always the case. This emphasises the fact that the statement of the
Extension Theorem is not true for pluriforms. On the positive side, the following
is known to hold.

Theorem 5.3 ([GKP13a, Theorem 1.3]). Let X be a normal, rationally connected, pro-
jective variety. If X is factorial and has canonical singularities, then

H0
(

X, (Ω1
X)

[m]
)
= 0 for all m ∈N+, where (Ω1

X)
[m] :=

(
(Ω1

X)
⊗m)∗∗. �

Remark 5.4 (Relation between Theorems 5.1 and 5.3). Let X be a normal space.
Assume that there exists a Q-divisor D on X such that (X, D) is klt. If X is factorial,
then X has canonical singularities, cf. [KM98, Cor. 2.35].

Remark 5.5 (Necessity of the assumption that X is canonical). There are examples
of rational surfaces X with log terminal singularities whose canonical bundle is
torsion or even ample, cf. [Tot12, Example 10] or [Kol08, Example 43]. Since
H0(X, OX(mKX)

)
⊂ H0(X, (Ω1

X)
[m·dim X]

)
, these examples show that the assump-

tion that X has canonical singularities cannot be omitted in Theorem 5.3.

The proof of Theorem 5.3 uses the notion of semistable sheaves on singular
spaces, where semistability is defined respect to a movable curve class α. We take
the opportunity to correct an error in the proof given in [GKP13a]. An essen-
tial point in the proof is the fact that the reflexive tensor product of α-semistable
sheaves is again α-semistable. In [GKP13a, Fact A.13], we referred to [CP11] for a
proof, where however only the case that α is in the interior of the movable cone is
established. The gap has been closed in [GKP14, Sect. 1.1.2 and Thm. 4.2].

Now, arguing by contradiction, one proceeds by analysing the maximal
destabilising subsheaf S of a reflexive tensor power (Ω1

X)
[m]. The factoriality is
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used to conclude that det S is a line bundle. This is important for calculations
involving the restriction det S |C: without the factoriality assumption, det S |C
might contain torsion, which kills the argument. In fact, if S is a coherent sheaf
on a smooth curve, then the positivity of c1(S ) does not imply ampleness of S .
Instead, one might have S = A⊕ T with A a negative line bundle and T a (large)
torsion sheaf.

Remark 5.6 (Theorem 5.3 in the Q-factorial setting). If X is not factorial in The-
orem 5.3, but still Q-factorial, then not only the proof of Theorem 5.3 fails, but the
statement itself is false. A counterexample is given in [GKP13a, Example 3.7], by
exhibiting a rationally connected surface S such that H0(S, (Ω1

S)
[2]) 6= 0.

Two recent preprints of Wenhao Ou, [Ou13, Ou14], describe the structure of
rationally connected surfaces and threefolds with canonical singularities carrying
a non-zero pluriform.

Following [Cam95] in the smooth case, a refined Kodaira dimension can be
defined also in the singular case.

Definition 5.7. Let X be a normal, Q-factorial, projective variety. Set

κ+(X) := max{κ(det F ) |F ⊂ Ω[p]
X a coherent subsheaf and 1 ≤ p ≤ n}.

Obviously, κ+(X) ≥ κ(X). Unfortunately, κ+(X) does not behave well bira-
tionally, even when X has canonical singularities. In fact, [GKP13a, Example 3.7]
exhibits a rational surface X supporting a rank-one, reflexive subsheaf L ⊂ Ω[1]

X
such that L [2]) = OX ⊂ (Ω1

X)
[2]. Thus κ+(X) ≥ 0, whereas κ+(X̂) = −∞ for any

desingularisation X̂ of X.

5.2. The tangent bundle of rationally connected varieties. As already men-
tioned, a rationally connected manifold X carries many rational curves C such
that TX |C is ample. It is natural to ask whether this generalises to klt varieties: as-
sume that (X, ∆) is klt or that X has only canonical singularities. If X is rationally
(chain) connected, can one find rational curves C through the general point of X
such that TX |C is ample2? The answer is negative in general.

Proposition 5.8. Let (X, ∆) be klt and rationally connected. Suppose that
H0(X, (Ω1

X)
[m]) 6= 0 for some m. Then there is no irreducible curve C through the

general point of X, such that TX |C is ample. In particular, there does not exist a rational
curve C not meeting the singular locus of X such that TX |C is ample.

Proof. Fix a non-zero form ω ∈ H0(X, (Ω1
X)

[m]
)
6= 0. Suppose to the contrary and

assume that there is an irreducible curve C through the general point p of X, such
that TX |C is ample. The form ω defines a morphism

λ : (T ⊗m
X )∗∗ =: T

[m]
X → OX .

Restricting to C and observing that C passes through a general point of X, we
obtain a non-zero morphism

λC : T
[m]

X |C → OC.

On the other hand, since TX |C is ample, so is T ⊗m
X |C = (T ⊗m

X )|C. Using the

generically injective map T ⊗m
X |C → T

[m]
X |C, we conclude that T

[m]
X |C is ample.

Hence λC = 0, a contradiction. �

2Observe that the sheaf TX need not be locally free. We refer the reader to [Anc82, Section 2] for the
definition of ampleness for arbitrary coherent sheaves.
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5.3. Related and complementary results. In contrast to the non-existence of dif-
ferential forms on rationally chain connected spaces non-existence of Kähler-
differentials modulo torsion holds without any assumption as to the nature of the
singularities.

Theorem 5.9 ([Keb13b, Theorem 4.1]). Let X be a reduced, projective scheme. Assume
that X is rationally chain connected. Then H0(X, Ωp

X

/
tor
)
= 0, for all p. �

We do not assume that X is irreducible. The statement of Theorem 5.9 becomes
wrong if one replaces Ωp

X

/
tor with Kähler differentials. Examples are given in

[Keb13b, Section 4]. There are related results for h-differentials, [JH13].

6. THE LIPMAN-ZARISKI CONJECTURE

The Lipman-Zariski Conjecture [Lip65, page 874], originally stated as a ques-
tion, asserts that a normal variety X whose tangent sheaf TX is locally free, is
smooth. Besides work of Lipman, the first results in this direction concern hyper-
surfaces and homogeneous complete intersections, and are due to Scheja-Storch
[SS72, Chapter 9] and Hochster [Hoc75]. Generalising previous results by Steen-
brink and van Straten, [SvS85], Flenner [Fle88] proved the Lipman-Zariski Con-
jecture if the singular locus of X has codimension at least 3. Källström established
the conjecture for complete intersections, [Kä11].

As a consequence of the Extension Theorem 2.4, we obtain the conjecture in the
klt case, where the singular locus is of codimension two in general.

Theorem 6.1 ([GKKP11, Theorem 6.1]). Let X be a normal, projective klt variety. In
other words, assume that (X, 0) is klt. If the tangent sheaf TX is locally free, X is smooth.

Idea of proof. Like most other proofs of special cases of the Lipman-Zariski Conjec-
ture, Theorem 6.1 is shown by lifting differential forms to a resolution of singu-
larities. In our case, the Extension Theorem 2.4 allows to do that. We argue by
contradiction and assume that X is singular while TX is locally free. Choose the
so-called functorial or canonical resolution π : X̃ → X, which is a log-resolution
that commutes with smooth morphisms, see [Kol07]. By possibly shrinking X, we
may assume that TX is locally free; choose a basis θ1, . . . , θn. These vector fields
lift by [GKK10, Corollary 4.7] to logarithmic vector fields

θ̃j ∈ H0(X̃, TX̃(− log E)
)
.

Choose the dual basis outside E to obtain differential forms

ωj ∈ H0(X̃ \ E, Ω1
X̃

)
, for all 1 ≤ j ≤ n.

By the Extension Theorem 2.4, the ωj are actually holomorphic forms on all of X̃.
The identity ωi(θ̃j) = δi,j therefore holds everywhere on X̃. However, the θ̃j are
tangent to the exceptional divisor, providing a contradiction. �

Further generalisations. Recently, Graf, Graf-Kovács [GK13] and Druel [Dru13]
generalised Theorem 6.1 to the log-canonical case. Druel’s proof is independent of
the Extension Theorem and instead uses foliation theory, while Graf-Kovács use
an Extension Theorem for Du Bois pairs. Finally, we mention that Jörder proved
the Lipman-Zariski Conjecture in case where TX has a local basis of commuting
vector fields [Jö13], and in case where there exists holomorphic C∗ action with non-
negative weights whose fixed point locus is not contained in the singular locus of
X, [Jö14].
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7. BOGOMOLOV-SOMMESE VANISHING AND HYPERBOLICITY OF MODULI SPACES

The Extension Theorem 2.5 has been applied to prove hyperbolicity properties
of moduli spaces. One of the further key ingredients is a generalisation of the
Bogomolov-Sommese Vanishing Theorem to singular varieties. Since these mat-
ters are explained in quite some detail in the survey paper [Keb13a], we only recall
the most important results here.

The most general version of the Bogomolov-Sommese vanishing is due to Graf
[Gra13], generalising [GKKP11, Theorem 7.2]. We refrain from stating the most
general form, which works in the context of “Campana orbifolds” or “C-pairs”,
but just cite the following, more intuitive version.

Theorem 7.1 ([Gra13, Theorem 1.3]). Let (X, D) be a normal, projective, log-canonical
pair. Assume that A ⊂ Ω[p]

X (logbDc) is a reflexive sheaf of rank 1. Then κ(A ) ≤ p. �

It applies to moduli problems in the following way.

Theorem 7.2 ([KK10, Corollary 1.3]). Let f ◦ : X◦ → Y◦ be a smooth projective fam-
ily of canonically polarised varieties, over a quasi-projective manifold Y◦ of dimension
dim Y◦ ≤ 3. Then either

(7.2.1) κ(Y◦) = −∞ and Var( f ◦) < dim Y◦, or
(7.2.2) κ(Y◦) ≥ 0 and Var( f ◦) ≤ κ(Y◦).

Remark 7.3. Recall that by definition, κ(Y◦) = κ(KY + D), where Y is a smooth
projective compactification and D = Y \Y◦.

Idea of proof. Consider the case where Y := Y◦ is projective and KY linearly trivial.
By Miyaoka’s work [Miy87a, Miy87b], the sheaf of differential forms, Ω1

Y will then
be semistable with respect to any polarisation. Now, if there was a family f ◦ :
X◦ → Y◦ of positive variation, it has been shown by Viehweg-Zuo that a suitable
symmetric product of Ω1

Y contains a positive subsheaf, violating semistablity.
If Y◦ is not projective, then it can be compactified to Y by adding a boundary

divisor D with simple normal crossings. Assume for simplicity that KY + D ≡num
0 and that the Picard-Number of Ymin is one, so that any line bundle is either
numerically trivial, ample or anti-ample. In this setting, Bogomolov-Sommese
vanishing can be used to replace Miyaoka’s semistability argument, which is not
available in the presence of boundary divisors: by Viehweg-Zuo, the existence
of a non-trivial family would imply that Ω1

Y(log D) is not semistable. However,
any maximally destabilising subsheaf would automatically be ample, violating
Bogomolov-Sommese.

If the simplifying assumptions are not satisfied and if dim Y◦ ≤ 3, then one can
apply the minimal model program to come to a singular space Ymin with numer-
ically trivial log-canonical class. With sufficient technical work, the extension the-
orem allows to work on these spaces, and to adopt the ideas sketched above. �

Theorem 7.2 is in fact a consequence of the following more general result.

Theorem 7.4 ([JK11, Theorem 1.5]). Let f : X◦ → Y◦ be a smooth family of canonically
polarised varieties over a smooth quasi-projective base. If Y◦ is special in the sense of
Campana, then the family f is isotrivial. �

Remark 7.5. In case where Y◦ is compact, a somewhat weaker version of The-
orem 7.2 has been shown in all dimensions by Patakfalvi, [Pat12]. Generalisations
of Theorems 7.2 and Theorems 7.4 to all dimensions are contained in a preprint by
Campana-Păun, [CP13], and in the upcoming PhD thesis of Behrouz Taji.
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Part II. Local fundamental groups and étale covers

8. ÉTALE COVERS OF A KLT SPACE AND ITS SMOOTH LOCUS

8.1. Finiteness of obstructions to extending finite étale covers from the smooth
locus. Working with a singular complex algebraic variety X, one is often inter-
ested in comparing the set of finite étale covers of X with that of its smooth locus
Xreg. More precisely, one may ask the following.

Question 8.1. What are the obstructions to extending finite étale covers of Xreg to X?
How do the étale fundamental groups of X and of its smooth locus differ?

Our motivation to consider this question came from the study of varieties
with canonical singularities and numerical trivial canonical classes and vanishing
second Chern class in a suitable sense. This will be discussed in the subsequent
Section 9.

Remark 8.2. If X is normal, then it is a basic fact that the natural push-forward map
between étale fundamental groups,

(8.2.1) ι̂∗ : π̂1(X̃reg)→ π̂1(X̃),

is surjective. Question 8.1 therefore asks for conditions to guarantee injectivity.

Building on recent boundedness theorem of Hacon-McKernan-Xu for Q-Fano
klt pairs, [HMX12, Corollary 1.8], Chenyang Xu recently gave a complete answer
for klt spaces with isolated singularities.

Theorem 8.3 ([Xu12, Theorem 1]). Let 0 ∈ (X, ∆) be an analytic germ of an algebraic
klt singularity. Then the algebraic local fundamental group π̂loc

1 (X, 0) is finite. �

In the setting of Theorem 8.3, recall that 0 ∈ X admits a basis of neighbour-
hoods U which are homeomorphic to the topological cone over the link Link(X, 0)
The local fundamental group of 0 ∈ X is defined as the usual topological funda-
mental group of the link, that is, π̂loc

1 (X, 0) := π1
(

Link(X, s)
)
. The algebraic local

fundamental group is its profinite completion.

Problem 8.4. It is an open question whether an analogue of Theorem 8.3 holds for the
local fundamental group, [Kol11, Question 26] and [Xu12, Conjecture 1].

Building on Xu’s result, the paper [GKP13b] establishes the following answer to
Question 8.1. Recall from the Section 1 on page 2 that a finite surjective morphism
f : X → Y between normal varieties is quasi-étale, if it is étale outside a set of
codimension two. Equivalently, if f is étale over the smooth locus of Y.

Theorem 8.5 ([GKP13b, Theorem 1.4]). Let X be a normal, complex, quasi-projective
variety. Assume that there exists a Q-Weil divisor ∆ such that (X, ∆) is klt. Then, there
exists a normal variety X̃ and a quasi-étale, Galois morphism γ : X̃ → X, such that the
following, equivalent conditions hold.

(8.5.1) Any finite, étale cover of X̃reg extends to a finite, étale cover of X̃.
(8.5.2) The natural map ι̂∗ : π̂1(X̃reg) → π̂1(X̃) of étale fundamental groups induced

by the inclusion of the smooth locus, ι : X̃reg → X̃, is an isomorphism. �

A few remarks and comments are perhaps in order. First of all, in Theorem 8.5
and throughout this paper, Galois morphisms are assumed to be finite and surject-
ive, but need not be étale. Second, despite appearance to the contrary, Theorem 8.5
does not imply that the kernel of the push-forward morphism (8.2.1) is finite for
all klt spaces. A counterexample is discussed in [GKP13b, Section 14.2]. Third,
we point out that the variety X̃ of Theorem 8.5 is not unique. In fact, it is shown
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Y0

η0

Y1

η1

γ1

Y2

η2

γ2

X0 S X1
ι1

X2
ι2

The figure shows the setup for the main result, Theorem 8.6, schematically. The
morphisms ηi are Galois covers over a sequence X ⊇ X0 ⊇ X1 ⊇ · · · is increasingly small
open subsets of X. The morphisms γi between these covering spaces are étale away from
the preimages of S. In Theorem 8.6, the set S is of codimension two or more. This aspect is

difficult to illustrate and therefore not properly shown in the figure.

FIGURE 8.1. Setup of Theorem 8.6

in [GKP13b, Section 14.3] by way of example that a unique, minimal choice of X̃
cannot exist in general.

8.2. Generalisations. Theorem 8.5 is in fact a corollary of the following, more gen-
eral and much more involved result. In essence, Theorem 8.6 asserts that in any
infinite tower of quasi-étale Galois morphisms over any sequence of increasingly
smaller and smaller subsets of X, all but finitely many of the morphisms must in
fact be étale.

Theorem 8.6 ([GKP13b, Theorem 2.1]). Let X be a normal, complex, quasi-projective
variety of dimension dim X ≥ 2. Assume that there exists a Q-Weil divisor ∆ such that
(X, ∆) is klt. Suppose further that we are given a descending chain of dense open subsets
X ⊇ X0 ⊇ X1 ⊇ · · · , a closed reduced subscheme S ⊂ X of codimension codimX S ≥ 2,
and a commutative diagram of morphisms between normal varieties,

(8.6.1)

Y0

η0
����

Y1
γ1oo

η1
����

Y2
γ2oo

η2
����

Y3
γ3oo

η3
����

· · ·
γ4oo

X X0?
_

ι0
oo X1?

_
ι1
oo X2?

_
ι2
oo X3?

_
ι3
oo · · · ,? _

ι4
oo

where the following holds for all indices i ∈N.
(8.6.2) The morphisms ιi are the inclusion maps.
(8.6.3) The morphisms γi are quasi-finite, dominant and étale away from the reduced

preimage set Si := η−1
i (S)red.

(8.6.4) The morphisms ηi are finite, surjective, Galois, and étale away from Si.
Then, all but finitely many of the morphisms γi are étale. Further, if S is not empty, then
there exists an open subset S◦ ⊆ S and a number NS ∈ N+, both depending only on X
and S, such that the following holds.

(8.6.5) Setting S′ := S \ S◦, we have dim S′ < dim S.
(8.6.6) Given any index i ∈ N and any point y ∈ η−1

i (S◦), the ramification index of
ηan

i at y is bounded by NS, that is, r
(
ηan

i , y
)
< NS. �

The setup of Theorem 8.6 is illustrated in Figure 8.1. To better understand its
meaning and its relation to Theorem 8.5, it is useful to consider Theorem 8.6 in the
special case where X = X0 = X1 = X2 = · · · = Y0, where the morphisms γi are
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finite and surjective, and where the morphisms ηi are of the form

ηi =

{
IdX if i = 0
γ1 ◦ · · · ◦ γi−1 ◦ γi if i > 0

Under these assumptions, Theorem 8.6 reduces to the following.

Theorem 8.7 ([GKP13b, Theorem 1.1]). Let X be a normal, complex, quasi-projective
variety. Assume that there exists a Q-Weil divisor ∆ such that (X, ∆) is klt. Assume we
are given a sequence of quasi-étale morphisms,

(8.7.1) X = Y0 Y1
γ1oo Y2

γ2oo Y3
γ3oo · · · .

γ4oo

If the composed morphisms γ1 ◦ · · · ◦ γi : Yi → X are Galois for every i ∈ N+, then all
but finitely many of the morphisms γi are étale. �

Remark 8.8. By purity of the branch locus, the assumption that all morphisms γi of
Theorem 8.7 are quasi-étale can also be formulated in one of the following, equi-
valent ways.

(8.8.1) All morphisms γ1 ◦ · · · ◦ γi are étale over the smooth locus of Y0.
(8.8.2) All morphisms γi are étale over the smooth locus of Yi−1.

Theorem 8.5 quickly follows from Theorem 8.7 by assuming to the contrary: if
no cover of X satisfied the conclusion of Theorem 8.5, we could inductively con-
struct a tower of morphisms that are étale over the smooth loci, but not everywhere
étale. Passing to the appropriate Galois closures, we can always achieve that the
morphisms are Galois over X.

8.3. Idea of proof. The main idea for the proof of Theorem 8.6 is roughly formu-
lated as follows. If X has isolated singularities, then Theorem 8.6 can be easily
deduced from Xu’s work and nothing new needs to be done. If the singularities of
X are not isolated, we employ Verdier’s topological triviality of algebraic morph-
isms, [Ver76], in order to construct a suitable Whitney stratification. Then argue
inductively, stratum-by-stratum, using cutting-down-arguments to reduce to the
case of isolated singularities.

8.4. Immediate applications. An array of morphisms as in Theorem 8.6 can in-
ductively be constructed by fixing a point p of a klt space X, by choosing Weil
divisors Di ⊂ Yi that are Q-Cartier near the preimages of p and taking the associ-
ated index-one-covers for the morphisms γi. The assertion that almost all morph-
isms γi are étale then implies that the divisors in question were Cartier near the
preimages of p. This way, one constructs a “simultaneous index-one cover” for all
divisors that are Q-Cartier in a neighbourhood of p.

Theorem 8.9 ([GKP13b, Theorem 1.9]). Let X be a normal, complex, quasi-projective
variety. Assume that there exists a Q-Weil divisor ∆ such that (X, ∆) is klt. Let p ∈ X be
any closed point. Then, there exists a Zariski-open neighbourhood X◦ of p ∈ X, a normal
variety X̃◦ and a quasi-étale, Galois morphism γ : X̃◦ → X◦, such that the following
holds for any Zariski-open neighbourhood U = U(p) ⊆ X◦ with preimage Ũ = γ−1(U).

(8.9.1) If D̃ is any Q-Cartier divisor on Ũ, then D̃ is Cartier.
(8.9.2) If D is any Q-Cartier divisor on U, then (# Gal(γ)) · D is Cartier. �

Remark 8.10 ([GKP13b, Remark 1.10]). Under the assumptions of Theorem 8.9,
there exists a number N ∈ N+ such that N · D is Cartier, whenever D is a Q-
Cartier divisor on X.
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For applications on the global structure of Kähler space, as given below in the
algebraic setting, it is highly desirable to extend the results presented in this sec-
tion to the analytic category.

9. FLATNESS CRITERIA AND CHARACTERISATION OF TORUS QUOTIENTS

9.1. Extension results for flat sheaves. We aim to apply Theorem 8.5 to the study
of flat sheaves on klt spaces. Since we are dealing with singular spaces, we do not
attempt to define flat sheaves via connections. Instead, a flat sheaf F will always
be an analytic, locally free sheaf, given by a representation of the fundamental
group. More precisely, we will use the following definition.

Definition 9.1. If Y is any complex space, and G is any locally free sheaf on Y, we call G
flat if it is defined by a representation of the topological fundamental group ρ : π1(Y) →
GLrank G (C). A locally free, algebraic sheaf on a complex algebraic variety Y is called flat
if and only if the associated analytic sheaf on the underlying complex space Yan is flat.

Now consider a normal variety X and a flat, locally free, analytic sheaf F ◦,
defined on the complex manifold Xan

reg. We aim to extend F ◦ across the singular-
ities, to a coherent sheaf that is defined on all of X. Unlike in the algebraic case,
where extension over subsets of codimension two is easy, the extension problem
for coherent analytic sheaves is generally hard. For flat sheaves, however, a fun-
damental theorem of Deligne, [Del70, II.5, Corollary 5.8 and Theorem 5.9], asserts
that F ◦ is algebraic, and thus extends to a coherent, algebraic sheaf F on X. If the
algebraic fundamental groups of X and Xreg agree, the following theorem shows
that Deligne’s extended sheaf F is again locally free and flat.

Theorem 9.2 ([GKP13b, Section 11.1]). Let X be a normal, complex, quasi-projective
variety, and assume that the natural inclusion map between étale fundamental groups,
ι̂∗ : π̂1(X̃reg) → π̂1(X̃), is isomorphic. If F ◦ is any flat, locally free, analytic sheaf
defined on the complex manifold Xan

reg, then there exists a flat, locally free, analytic sheaf
F on Xan such that F ◦ = F |Xan

reg .

Sketch of proof. Set Y := Xan and Y◦ := Xan
reg. The sheaf F ◦ then corresponds

to a representation ρ◦ : π1(Y◦) → GL
(
rank F , C

)
. We need to show that this

representation is induced by a representation of π1(Y). This is trivially true if
the natural, surjective push-forward map of fundamental groups, ι∗ : π1(Y◦) →
π1(Y) was known to be isomorphic. Our assumptions, however, guarantee only
that the induced map ι̂∗ between profinite completions is an isomorphism.

Write G := img(ρ◦). As a finitely generated subgroup of the general linear
group, G is residually finite by Malcev’s theorem. Consequently, the profinite
completion morphism a : G → Ĝ is injective. The remaining proof is now purely
group-theoretic. �

A combination of Theorems 8.5 and 9.2 immediately gives the following con-
sequence.

Theorem 9.3 ([GKP13b, Theorem 1.13]). Let X be a normal, complex, quasi-projective
variety. Assume that there exists a Q-Weil divisor ∆ such that (X, ∆) is klt. Then, there
exists a normal variety X̃ and a quasi-étale, Galois morphism γ : X̃ → X, such that the
following holds. If G ◦ is any flat, locally free, analytic sheaf on the complex space X̃an

reg,
there exists a flat, locally free, algebraic sheaf G on X̃ such that G ◦ is isomorphic to the
analytification of G |X̃reg

. �



18 STEFAN KEBEKUS AND THOMAS PETERNELL

9.2. Flatness criteria. Theorem 9.3 can be used to show that many classical flat-
ness criteria for semistable vector bundles, cf. [UY86, Kob87, Sim92, BS94], gener-
alise to spaces with klt singularities, at least after passing to a suitable quasi-étale
cover whose étale fundamental group coincides with that of its smooth locus.

9.2.1. Chern classes on singular spaces. In view of the applications, we are mostly in-
terested in flatness criteria for semistable sheaves with vanishing first and second
Chern classes. The literature discusses several competing notions of Chern classes
on singular spaces, all of which are technically challenging, cf. [Mac74, Alu06]. We
will restrict ourselves to the following elementary definition, which suffices in our
case. We refer the reader to [GKP13b, Section 4] for more details.

Definition 9.4. Let X be a normal variety and E a coherent sheaf of OX-modules. A
resolution of (X, E ) is a proper, birational and surjective morphism π : X̃ → X such
that the space X̃ is smooth, and such that the sheaf π∗(E )

/
tor is locally free. If π is

isomorphic over the open set where X is smooth and E
/

tor is locally free, we call π a
strong resolution of (X, E ).

The existence of a resolution of singularities combined with a classical result of
Rossi, [Ros68, Thm. 3.5], shows that resolutions and strong resolutions of (X, E )
exist.

Definition 9.5. Let X be a normal, n-dimensional, quasi-projective variety and E be a
coherent sheaf of OX-modules. Assume we are given a number i ∈ N+ such that X
is smooth in codimension i and such that E is locally free in codimension i. Given any
resolution morphism π : X̃ → X of (X, E ) and any set of Cartier divisors L1, . . . Ln−i on
X, we use the following shorthand notation

ci(E ) · L1 · · · Ln−i := ci(F ) · (π∗L1) · · · (π∗Ln−i) ∈ Z.

where F := π∗E
/

tor, and where ci(F ) denote the classical Chern classes of the locally

free sheaf F on the smooth variety X̃.

9.2.2. Flatness criteria. Using the above definitions, we generalize a famous flat-
ness criterion of Simpson, [Sim92], to the klt setting.

Theorem 9.6 ([GKP13b, Theorem 1.19]). Let X be an n-dimensional, normal, complex,
projective variety, smooth in codimension two. Assume that there exists a Q-Weil divisor
D such that (X, D) is klt. Let H be an ample Cartier divisor on X, and E be a reflexive,
H-semistable sheaf. Assume that the following intersection numbers vanish

(9.6.1) c1(E ) · Hn−1 = 0, c1(E )2 · Hn−2 = 0, and c2(E ) · Hn−2 = 0.

Then, there exists a normal variety X̃ and a quasi-étale, Galois morphism γ : X̃ → X, such
that (γ∗E )∗∗ is locally free and flat, that is, (γ∗E )∗∗ is given by a linear representation of
π1(X̃).

Idea of proof. The proof of Theorem 9.6 uses cutting-down arguments to reduce
to the case of a smooth surface S ⊂ Xreg, where Simpson’s flatness criterion
[Sim92] can be applied. Hamm and Goreski-MacPherson’s version of the Lef-
schetz theorem [GM88, II.1.2] implies that the sheaf E |S extends to a flat sheaf
that is defined on all of Xreg. Boundedness and some vanishing results for singu-
lar spaces identify this sheaf with E |Xreg . An application of Theorem 9.3 finishes
the proof. �
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9.3. Characterisation of torus quotients. As a classical consequence of Yau’s the-
orem [Yau78] on the existence of Kähler-Einstein metrics, any Ricci-flat, compact
Kähler manifold X with vanishing second Chern class is covered by a complex
torus, cf. [LB70, Thm. 12.4.3] and [Kob87, Ch. IV, Cor. 4.15]. Using the flatness cri-
teria discussed above, we generalise this result to the singular case, when X has
terminal or canonical singularities.

To this end, recall from Theorem 6.1 that a klt space is smooth if and only if its
tangent sheaf is locally free. Theorem 9.3 therefore implies the following criterion
to guarantee that a given variety has quotient singularities and is a quotient of an
Abelian variety.

Theorem 9.7 ([GKP13b, Corollary 1.15]). Let X be a normal, complex, quasi-projective
variety. Assume that (X, D) is klt for some Q-divisor D. If TXreg is flat, then X̃ is smooth
and X has only quotient singularities. If X is additionally assumed to be projective, then
there exists an Abelian variety A and a quasi-étale Galois morphism A→ X̃. �

With sufficient amount of technical work, the flatness criterion of semistable
sheaves with vanishing first and second Chern classes, Theorem 9.6, will then im-
ply the following.

Theorem 9.8 ([GKP13b, Theorem 1.16]). Let X be a normal, complex, projective vari-
ety of dimension n with at worst canonical singularities. Assume that X is smooth in
codimension two and that the canonical divisor is numerically trivial, KX ≡ 0. Fur-
ther, assume that there exist ample divisors H1, . . . , Hn−2 on X and a desingularisation
π : X̃ → X such that c2(TX̃) ·π

∗(H1) · · ·π∗(Hn−2) = 0. Then, there exists an Abelian
variety A and a quasi-étale, Galois morphism A→ X. �

There are, in fact, necessary and sufficient conditions for a variety to be a torus
quotient, cf. [GKP13b, Section 12]. In dimension three, Theorem 9.8 has been estab-
lished by Shepherd-Barron and Wilson in [SBW94], and our proof of Theorem 9.8
follows their line of reasoning. The article [SBW94] also asserts an variant of The-
orem 9.8 for threefolds with canonical singularities.

10. APPLICATIONS TO ENDOMORPHISMS OF ALGEBRAIC VARIETIES

In this final section we discuss an application of Theorem 8.7 to polarised endo-
morphisms of algebraic varieties. First we provide the relevant definition.

Definition 10.1. Let X be a normal, complex, projective variety. An endomorphism f :
X → X is called polarised if there exists an ample Cartier divisor H and a positive
number q ∈N+ such that f ∗(H) ∼ q · H.

In [NZ10], Nakayama and Zhang study the structure of varieties admitting
polarised endomorphisms. They conjecture in [NZ10, Conjecture 1.2] that any
variety of this kind is either uniruled or covered by an Abelian variety, with a
quasi-étale covering map. They prove the conjecture in [NZ10, Theorem 3.3] un-
der an additional assumption concerning fundamental groups of smooth loci of
Euclidean-open subsets of X, which turns out to be an immediate consequence of
Theorem 8.7. The following result is thus established.

Theorem 10.2 ([NZ10, Conjecture 1.2] and [GKP13b, Theorem 1.20]). Let X be a
normal, complex, projective variety admitting a non-trivial polarised endomorphism. As-
sume that X is not uniruled. Then, there exists an Abelian variety A and quasi-étale
morphism A→ X. �

Theorem 10.2 has consequences for the structure theory of varieties with endo-
morphisms. The following results have been shown in [NZ10], conditional to the
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assumption that [NZ10, Conjecture 1.2] = Theorem 10.2 holds true. The definition
of the invariant q] is recalled below.

Theorem 10.3 ([NZ10, Theorem 1.3] and [GKP13b, Theorem 13.1]). Let f : X → X
be a non-isomorphic, polarised endomorphism of a normal, complex, projective variety
X of dimension n. Then κ(X) ≤ 0 and q](X, f ) ≤ n. Furthermore, there exists an
Abelian variety A of dimension dim A = q](X, f ) and a commutative diagram of normal,
projective varieties,

A

fA
��

Z

fZ
��

ωoo ρ // V

fV
��

τ // X

f
��

A Zω

flat, surjective
oo ρ

biratl.
// V τ

finite, surjective, quasi-étale
// X,

where all vertical arrows are polarised endomorphism, and every fibre of ω is irreducible,
normal and rationally connected. In particular, X is rationally connected if q](X, f ) = 0.

Moreover, the fundamental group π1(X) contains a finitely generated, Abelian sub-
group of finite index whose rank is at most 2 · q](X, f ). �

Remark 10.4 ([NZ10, page 992f]). In the setting of Theorem 10.3, the number
q](X, f ) is defined as the supremum of irregularities q(X̃′) = h1(X̃′, OX̃′

)
of a

smooth model X̃′ of X′ for all quasi-étale morphism τ : X′ → X admitting an
endomorphism f ′ : X′ → X′ with τ ◦ f ′ = f ◦ τ.

Even for general ramified endomorphisms f : X → X it is known that X is
uniruled. For this fact and further information we refer to [AKP08]. It would
definitely be interesting to establish both theorems for polarised endomorphisms
of Kähler varieties.
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